首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   173篇
  免费   1篇
  国内免费   2篇
测绘学   7篇
大气科学   56篇
地球物理   22篇
地质学   43篇
海洋学   4篇
天文学   20篇
综合类   1篇
自然地理   23篇
  2021年   1篇
  2019年   1篇
  2018年   4篇
  2017年   3篇
  2016年   5篇
  2015年   3篇
  2014年   17篇
  2013年   8篇
  2012年   8篇
  2011年   13篇
  2010年   9篇
  2009年   10篇
  2008年   9篇
  2007年   11篇
  2006年   5篇
  2005年   5篇
  2004年   5篇
  2003年   3篇
  2002年   3篇
  2001年   1篇
  2000年   4篇
  1999年   7篇
  1998年   3篇
  1997年   3篇
  1996年   3篇
  1995年   4篇
  1994年   5篇
  1991年   2篇
  1990年   1篇
  1986年   2篇
  1985年   2篇
  1984年   1篇
  1983年   1篇
  1982年   2篇
  1980年   3篇
  1979年   1篇
  1978年   2篇
  1973年   1篇
  1971年   1篇
  1970年   1篇
  1969年   1篇
  1966年   1篇
  1949年   1篇
排序方式: 共有176条查询结果,搜索用时 62 毫秒
31.
Modal metasomatism in the Kaapvaal craton lithosphere is well documented in upper mantle xenoliths sampled by both group I (mainly late Cretaceous) and group II (mainly early Cretaceous to late Jurassic) kimberlites in the Kimberley area. The metasomatic style is characterized by introduction of K, H and large ion lithophile/high field strength (LIL/HFS) elements into the lithospheric mantle leading to the crystallization of hydrous potassic phases such as phlogopite and/or K-amphibole. Textures indicate that the hydrous phases either replace pre-existing assemblages in peridotites, forming the metasomatized peridotite suite (phlogopite–K-richterite–peridotites: PKPs) or crystallize from K-rich melts, forming the mica–amphibole–rutile–ilmenite–diopside (MARID) suite of xenoliths. These K-rich assemblages become potential low melting source components for alkaline incompatible trace element enriched magmas. The timing of metasomatism and its temporal and possible genetic relation to kimberlite magmatism is poorly constrained because of the rarity of phases in the metasomatic assemblages suitable for precise dating. Here we present precise sensitive high resolution ion microprobe (SHRIMP) U–Pb formation ages of 88 ± 2 (1σ=1 standard deviation) and 82 ± 3 Ma data for zircons from a K-richterite–phlogopite-bearing metasomatized peridotite (PKP) and a MARID xenolith respectively, sampled by a group I kimberlite. Both average PKP and MARID zircon ages are indistinguishable from emplacement ages of group I kimberlites in the Kimberley area dated at 83 ± 4 (2σ) and 84 ± 0.9 Ma. One exceptionally old age spot of 102 ± 5 Ma from a PKP zircon provides evidence for modal metasomatism predating group I kimberlite emplacement by several millions of years with minor resetting of the U–Pb isotopic system of most analyzed PKP zircons to a group I emplacement age. Detailed textural and mineral chemical analysis, including high energy X-ray mapping and analysis of fluid inclusion daughter crystals, indicates a complex reaction history for both PKPs and MARIDs. U–Pb zircon ages from this study combined with literature data and experimentally derived models for MARID formation are used to suggest that MARID-formation is concurrent and genetically related to both group I and II kimberlite magmatism in the Kimberley area. MARID and PKP zircon ages are also consistent with the idea first proposed by Dawson and Smith (Geochim Cosmochim Acta 41: 309–323, 1977) that metasomatized peridotites may form from interaction of hydrous fluids expelled by solidifying MARID-type melts with peridotitic wall rocks. Received: 13 December 1999 / Accepted: 13 April 2000  相似文献   
32.
Sea level rise (SLR) can exert significant stress on highly populated coastal societies and low-lying island countries around the world. Because of this, there is huge societal demand for improved decadal predictions and future projections of SLR, particularly on a local scale along coastlines. Regionally, sea level variations can deviate considerably from the global mean due to various geophysical processes. These include changes of ocean circulations, which partially can be attributed to natural, internal modes of variability in the complex Earth’s climate system. Anthropogenic influence may also contribute to regional sea level variations. Separating the effects of natural climate modes and anthropogenic forcing, however, remains a challenge and requires identification of the imprint of specific climate modes in observed sea level change patterns. In this paper, we review our current state of knowledge about spatial patterns of sea level variability associated with natural climate modes on interannual-to-multidecadal timescales, with particular focus on decadal-to-multidecadal variability. Relevant climate modes and our current state of understanding their associated sea level patterns and driving mechanisms are elaborated separately for the Pacific, the Indian, the Atlantic, and the Arctic and Southern Oceans. We also discuss the issues, challenges and future outlooks for understanding the regional sea level patterns associated with climate modes. Effects of these internal modes have to be taken into account in order to achieve more reliable near-term predictions and future projections of regional SLR.  相似文献   
33.
Summary. The flexure of an incompressible, thick elastic plate floating on an inviscid substratum and subject to an external gravity field is re-analysed. The solution is derived from momentum equations which account for the advection of hydrostatic pre-stress. This is contrasted with a recently published thick-plate solution derived from momentum equations without a pre-stress term. It is demonstrated that neglecting pre-stress advection renders the solution singular when the model degenerates into an inviscid half-space. If pre-stress advection is included, the solution remains correct in this limit. A numerical comparison of both types of thick-plate solution with results based on conventional thin-plate theory further shows that, for geophysically relevant models, the difference in the momentum balance entails discrepancies between the thick-plate solutions which are comparable to the errors introduced by the thin-plate approximation.  相似文献   
34.
Abstract— Extensive textural studies have been carried out at the suevite in a quarry several kilometers east of the rim of the Nördlinger Ries crater. The composition, grain size and clast orientation of suevite on a 6 m high vertical section were quantified macroscopicaily, as well as microscopically. There exists a strong correlation between the texture of a clastic rock and the transport mechanism of its components. This correlation can be used to obtain information about the transport mechanism of the suevite components, which is fundamental to the understanding of the impact process. A consolidated main suevite enriched in “Flädle” and “Bomben” can be distinguished from a poorly consolidated base suevite, deprived of “Fädle” but relatively well sorted in clast grains. It has been proven that the glass clasts in the main suevite exhibit an inverse gradation, while the crystalline clasts in the lower half of the section show a normal gradation. Eighty one percent of the samples investigated possess orientated clasts ≥2 mm. From the results of this investigation, a predominantly horizontal transport of the main suevite is indicated for the area of investigation. This transport could occur in the form of a suevitie flow similar to that of a pyroclastic flow.  相似文献   
35.
We describe an in situ method for simultaneous measurement of U–Pb–Hf isotopes and trace element compositions of zircons using a quadrupole and multiple-collector inductively-coupled-plasma mass spectrometer (Q-ICP-MS and MC-ICP-MS, respectively) connected to a single excimer laser-ablation system. A laser-generated zircon aerosol was split behind the ablation cell into two transport tubes via a Y-shaped connector and simultaneously introduced into the two mass spectrometers. Hafnium isotopes were measured on the MC-ICP-MS instrument, while U–Pb ages and trace element compositions were determined using the Q-ICP-MS. The precision and accuracy of this method was evaluated using six well-known and widely used zircon standards (91500, Temora-2, GJ-1, Mud Tank, BR266 and Monastery). Analyses were carried out using spot sizes of 32, 44 and 60 μm. For the 44 and 60 μm spot, the resulting U–Pb ages, Hf isotopic and rare earth element (REE) compositions of these six zircons agree with recommended/reported values within 2σ error. The difference in relative standard deviations (RSD) of 206Pb/238U ages between split-flow measurements and those obtained separately on the Q-ICP-MS is within ~ 20% for 91500, Temora-2 and GJ-1, and ~ 60% for Mud Tank (due to its lower U and Pb concentrations). Our method provides a precise approach for determining the U–Pb age and the Hf isotopic and trace element compositions of zircon within a single ablation event. This is in particular important for analysis of zircons that are small or contain complicated zoning patterns. Finally, the REE composition of zircon BR266 is more homogeneous than other zircons and could be a suitable standard by which to benchmark new standards for microprobe analyses of zircons.  相似文献   
36.
Antarctica is the only continent that suffers major gaps in terrestrial gravity data coverage. To overcome this problem and to close these gaps as well as to densify the global satellite gravity field solutions, the International Association of Geodesy (IAG) Commission Project 2.4 “Antarctic Geoid” was set into action. This paper reviews the current situation concerning the gravity field in Antarctica. It is shown that airborne geophysical surveys are the most promising tools to gain new gravity data in Antarctica. In this context, a number of projects to be carried out during the International Polar Year 2007/2008 will contribute to this goal. To demonstrate the feasibility of the regional geoid improvement in Antarctica, we present a case study using gravity and topography data of the southern Prince Charles Mountains, East Antarctica. During the processing, the remove–compute– restore (RCR) technique and least-squares collocation (LSC) were applied. Adding signal parts of up to 6 m to the global gravity field model that was used as a basis, the calculated regional quasigeoid reveals the dominant features of bedrock topography in that region, namely the graben structure of the Lambert glacier system. The accuracy of the improved regional quasigeoid is estimated to be at the level of 15 cm.  相似文献   
37.
Liu  Xueyuan  Köhl  Armin  Stammer  Detlef  Masuda  Shuhei  Ishikawa  Yoichi  Mochizuki  Takashi 《Climate Dynamics》2017,49(3):1061-1075

We investigated the influence of dynamical in-consistency of initial conditions on the predictive skill of decadal climate predictions. The investigation builds on the fully coupled global model “Coupled GCM for Earth Simulator” (CFES). In two separate experiments, the ocean component of the coupled model is full-field initialized with two different initial fields from either the same coupled model CFES or the GECCO2 Ocean Synthesis while the atmosphere is initialized from CFES in both cases. Differences between both experiments show that higher SST forecast skill is obtained when initializing with coupled data assimilation initial conditions (CIH) instead of those from GECCO2 (GIH), with the most significant difference in skill obtained over the tropical Pacific at lead year one. High predictive skill of SST over the tropical Pacific seen in CIH reflects the good reproduction of El Niño events at lead year one. In contrast, GIH produces additional erroneous El Niño events. The tropical Pacific skill differences between both runs can be rationalized in terms of the zonal momentum balance between the wind stress and pressure gradient force, which characterizes the upper equatorial Pacific. In GIH, the differences between the oceanic and atmospheric state at initial time leads to imbalance between the zonal wind stress and pressure gradient force over the equatorial Pacific, which leads to the additional pseudo El Niño events and explains reduced predictive skill. The balance can be reestablished if anomaly initialization strategy is applied with GECCO2 initial conditions and improved predictive skill in the tropical Pacific is observed at lead year one. However, initializing the coupled model with self-consistent initial conditions leads to the highest skill of climate prediction in the tropical Pacific by preserving the momentum balance between zonal wind stress and pressure gradient force along the equatorial Pacific.

  相似文献   
38.
We examine the dependence of glacial-isostatic adjustment (GIA) due to changes in the Vatnajökull Ice Cap, Iceland, on the underlying viscosity structure. Iceland offers a unique case study for GIA research, with a thinner elastic lithosphere underlain by a low-viscosity zone or asthenosphere, as opposed to regions such as Fennoscandia or North America described by a thicker lithosphere, while not necessarily featuring an asthenosphere.A laterally homogeneous spherical earth model is used consisting of an elastic lithosphere, a viscoelastic asthenosphere, a viscoelastic upper and lower mantle and a fluid core. We examine the response of the earth model to three ice models with circular plans and cross-section profiles based on the assumption of perfectly plastic material, but with different load histories. These are: (1) A history where the ice cap grows from a AD 900 minimum to a maximum at 1890, followed by a uniform decrease until 1991, continuing to the present day at an average rate based on recent mass-balance measurements, (2) a history that is the same as the first, except for constant ice volumes prior to 1890, and (3) a history that is again the same as the first model, except that the post-1991 changes correspond to the measured mass-balance values. We first compare the response to each ice model using typical earth-model parameters for Iceland presented in the literature. We then undertake a parameter-space search, where we assess the importance of lithosphere thickness, asthenosphere viscosity and basal asthenosphere depth, to predicted vertical-displacement rates, and compare them to rates determined from GPS measurements obtained from campaigns conducted between 1991 and 1999.The earth-viscosity structure that provides the optimum predictions with respect to the GPS-derived vertical-displacement rates consists of an elastic lithosphere with a thickness of between 20 and 30 km, an asthenosphere viscosity between 1 and 2 × 1018 Pa s, and a basal asthenosphere depth between 250 km and possibly greater than 400 km. We find that the very low asthenosphere viscosity values of ca. 1017 Pa s sometimes suggested in the literature are not necessary to account for the rapid vertical-displacement rates observed, which are the result of the contemporary decrease in the mass of the ice cap not considered previously.  相似文献   
39.
The OSIRIS cameras on the Rosetta spacecraft observed Comet 9P/Tempel 1 from 5 days before to 10 days after it was hit by the Deep Impact projectile. The Narrow Angle Camera (NAC) monitored the cometary dust in 5 different filters. The Wide Angle Camera (WAC) observed through filters sensitive to emissions from OH, CN, Na, and OI together with the associated continuum. Before and after the impact the comet showed regular variations in intensity. The period of the brightness changes is consistent with the rotation period of Tempel 1. The overall brightness of Tempel 1 decreased by about 10% during the OSIRIS observations. The analysis of the impact ejecta shows that no new permanent coma structures were created by the impact. Most of the material moved with . Much of it left the comet in the form of icy grains which sublimated and fragmented within the first hour after the impact. The light curve of the comet after the impact and the amount of material leaving the comet ( of water ice and a presumably larger amount of dust) suggest that the impact ejecta were quickly accelerated by collisions with gas molecules. Therefore, the motion of the bulk of the ejecta cannot be described by ballistic trajectories, and the validity of determinations of the density and tensile strength of the nucleus of Tempel 1 with models using ballistic ejection of particles is uncertain.  相似文献   
40.
The Chemical Analyser subsystem of the Cosmic Dust Analyser (CDA) aboard the Cassini spacecraft performs in situ measurements of the chemical composition of dust in space. The instrument records time-of-flight mass spectra of cations, extracted from the impact cloud that is created by high-velocity particle impacts onto the detector target. Thus, the spectra not only show signals of particle components but also of ions from the target material and target contamination. The aim of this work is to determine which non-particle ions are to be expected in the spectra obtained in space operation at Saturn.We present an analysis of the contamination state of the instrument's impact target. Beside investigations of the purity of the rhodium target surface, spectra from CDA calibration experiments at the dust accelerator facility are evaluated with regard to contamination signatures. Furthermore, contamination mass lines in spectra obtained by impacts of Jovian and Saturnian dust stream particles are analysed. Due to their small size and high speed, stream particle impacts predominantly produce ions from the target material and therefore the spectra are excellent probes of the contamination state of the target operating in space. With the exception of adsorbed hydrogen and carbon, the level of contamination is very low.Implications for CDA spectra of Saturnian E ring particle impacts are derived. The findings confirm the published interpretations. The low level of alkali metal contamination implies a significant sodium contribution in the composition of E ring ice particles. Additionally, ionisation thresholds for the occurrence of contamination mass lines can be utilised to set limits for the impact velocity.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号